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ABSTRACT

Recent developments in fMRI acquisition techniques now enable fast sampling with whole-brain coverage, suggesting fMRI can be used to track changes in neural
activity at increasingly rapid timescales. When images are acquired at fast rates, the limiting factor for fMRI temporal resolution is the speed of the hemodynamic
response. Given that HRFs may vary substantially in subcortical structures, characterizing the speed of subcortical hemodynamic responses, and how the hemody-
namic response shape changes with stimulus duration (i.e. the hemodynamic nonlinearity), is needed for designing and interpreting fast fMRI studies of these regions.
We studied the temporal properties and nonlinearities of the hemodynamic response function (HRF) across the human subcortical visual system, imaging superior
colliculus (SC), lateral geniculate nucleus of the thalamus (LGN) and primary visual cortex (V1) with high spatiotemporal resolution 7 Tesla fMRI. By presenting
stimuli of varying durations, we mapped the timing and nonlinearity of hemodynamic responses in these structures at high spatiotemporal resolution. We found that
the hemodynamic response is consistently faster and narrower in subcortical structures than in cortex. However, the nonlinearity in LGN is similar to that in cortex,
with shorter duration stimuli eliciting larger and faster responses than would have been predicted by a linear model. Using oscillatory visual stimuli, we tested the
frequency response in LGN and found that its BOLD response tracked high-frequency (0.5 Hz) oscillations. The LGN response magnitudes were comparable to V1,
allowing oscillatory BOLD signals to be detected in LGN despite the small size of this structure. These results suggest that the increase in the speed and amplitude of the
hemodynamic response when neural activity is brief may be the key physiological driver of fast fMRI signals, enabling detection of high-frequency oscillations with
fMRI. We conclude that subcortical visual structures exhibit fast and nonlinear hemodynamic responses, and that these dynamics enable detection of fast BOLD signals

even within small deep brain structures when imaging is performed at ultra-high field.

Introduction

Functional magnetic resonance imaging (fMRI) is the highest spatial
resolution method available for noninvasively measuring activity
throughout the brain. A key advantage of fMRI is its ability to image
activity in subcortical structures such as brainstem and thalamus in
humans, as these areas are largely inaccessible through other noninva-
sive techniques such as EEG, and are rarely recorded from even in
invasive intracranial studies. Imaging subcortical structures is more
challenging than cortex, due to their small size and the reduced signal-to-
noise ratio (SNR) of the receiver arrays in deeper regions of the brain.
However, as the availability of ultra-high field (7 Tesla and above) MRI
scanners increases, many sites now have improved sensitivity that can
benefit subcortical imaging, leading to an increasing number of studies
successfully using fMRI to track activity in small individual nuclei of the
thalamus and brainstem (Bianciardi et al., 2015; Faull et al., 2015;

* Corresponding author. 149 13th St Rm. 2301, Charlestown, MA, 02129, USA.

E-mail address: 1dlewis@nmr.mgh.harvard.edu (L.D. Lewis).

https://doi.org/10.1016/j.neuroimage.2018.06.056

Loureiro et al., 2016; Moerel et al., 2015; Satpute et al., 2013; Sclocco
et al., 2017).

Since fMRI is an indirect technique, inferring neural activity through
measurements of vascular and blood oxygenation signals, understanding
the hemodynamic response properties of subcortical structures will be of
increasing importance when studying their functional role within whole-
brain circuits and in human cognition. The waveform of the hemody-
namic response function (HRF) varies in shape and timing across cortical
regions (Aguirre et al., 1998; Handwerker et al., 2004; Miezin et al.,
2000) and across voxels within cortical regions (de Zwart et al., 2005;
Saad et al., 2001), potentially reflecting different local distributions of
vascular anatomy and morphology. HRF timing may also be different in
thalamus and brainstem nuclei, as has been suggested by studies of the
subcortical visual system. Studies in animal models (Lau et al., 2011; Yen
et al.,, 2011) have shown that hemodynamic responses in the lateral
geniculate nucleus (LGN) of the thalamus peak hundreds of milliseconds
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earlier than visual cortex, as measured in response to visual stimuli
lasting several seconds. The superior colliculus (SC), a visual nucleus of
the brainstem, is particularly challenging to image due to its small size of
just a few millimeters, and its position immediately adjacent to the
ventricles making it vulnerable to physiological noise, but several studies
have nevertheless shown that its responses to visual stimuli can be
detected in human fMRI (DuBois and Cohen, 2000; Loureiro et al., 2016;
Savjani et al., 2018; Wall et al., 2009; Zhang et al., 2015). These studies
have typically reported very small magnitude BOLD responses in SC, but
with a time-to-peak that is faster than in visual cortex (Wall et al., 2009).
The waveform shape of an assumed hemodynamic response function
(HRF) is often used in fMRI analysis, and incorrect assumptions can lead
to substantial inference errors (Gonzalez-Castillo et al., 2012; Greve
et al.,, 2013; Lindquist et al., 2009; Uludag, 2008), suggesting that
different models will be needed for subcortical regions.

In addition to variation in the speed and amplitude of the hemody-
namic response across regions, the hemodynamic response exhibits
nonlinearities that are known to vary spatially across cortex. Non-
linearities in this context are changes in the hemodynamic response
function shape that occur with changes in the stimulus, and can manifest
as a difference in the apparent timing or amplitude of the hemodynamic
response function. A major nonlinearity is seen when varying stimulus
duration: brief stimuli elicit proportionally larger BOLD responses than
would have been predicted from the response to slow stimuli (Glover,
1999; Miller et al., 2001; Vazquez and Noll, 1998; Yesilyurt et al., 2008).
While these observed response nonlinearities may be partially attribut-
able to nonlinear neural responses, electrophysiological recordings
demonstrate that the magnitude of the neural nonlinearity is not suffi-
cient to explain the enhancement of fMRI responses (Janz et al., 2001; Li
and Freeman, 2007), meaning that a hemodynamic nonlinearity must
contribute. This nonlinearity varies across voxels (Birn et al., 2001;
Pfeuffer et al., 2003), across cortical regions (Soltysik et al., 2004), and
across individuals (Handwerker et al., 2004), and can lead to significant
statistical errors if not characterized (Handwerker et al., 2004; Wager
et al., 2005). Studies in the rat suggest that the nonlinearity of the he-
modynamic response may be altered in subcortical structures (Devon-
shire et al., 2012). Characterizing this nonlinearity in thalamic and
brainstem nuclei, particularly in the human brain, will be essential for
applying ultra-high field fMRI to studying whole-brain circuits.

Understanding the temporal properties of the HRF is also needed to
take advantage of recently developed methods for fast acquisition of
fMRI data using simultaneous multi-slice (SMS) imaging (Breuer et al.,
2005; Feinberg et al., 2010; Larkman et al., 2001; Moeller et al., 2010;
Setsompop et al., 2012). These acquisition techniques allow fast
(TR <400 ms) imaging of brain activity, and could potentially enable
inference of faster neural dynamics. We have recently shown that sur-
prisingly fast BOLD dynamics of up to 0.75Hz can be detected in the
human visual cortex using 7 T fMRI, and that nonlinearities in the he-
modynamic response support detection of high-frequency oscillatory
signals (Lewis et al., 2016). The temporal properties and nonlinearities of
the HRF in subcortical structures will therefore determine whether they
also exhibit high-frequency signals. Characterizing spatial variation in
hemodynamic response speed and nonlinearity will inform whether fast
fMRI may be able to detect fast neuronal activity not just in cortex, but
throughout the brain.

In addition to the importance of HRF properties for task-based fMRI,
the temporal properties of local hemodynamic responses have major
influences on resting state signals used to infer functional connectivity. A
region with a faster HRF will appear to have signals that occur earlier in
time, so temporal delays in the resting fMRI signal can originate from
vascular rather than neuronal delays (Chang et al., 2008; David et al.,
2008), and accounting for these delays in the analysis is needed.
Furthermore, the local temporal properties of the hemodynamic response
may influence the frequency content of the resting state BOLD signal, as
narrower HRFs will produce more high-frequency power (Chen and
Glover, 2015). Interpreting resting-state signals thus requires an
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understanding of the local hemodynamic properties of the brain regions
being studied.

To examine the temporal characteristics and nonlinearities of the
hemodynamic response within human subcortical structures, we focused
on the visual system, measuring responses in SC, LGN, and V1 to visual
stimuli of varying duration. We additionally tested whether high-
frequency responses could be detected in LGN, by presenting oscilla-
tory visual stimuli. We used deconvolution to estimate responses in each
region, which relies on some assumptions of linearity. In particular, it
assumes shift-invariant linearity, which has been demonstrated in cortex
at long interstimulus intervals (ISIs), but different vascular anatomical
properties could lead to different nonlinearities in subcortical structures.
We therefore studied responses using both short ISIs (2-5s), to analyze
responses typical of event-related studies, and long ISIs (17-21 s) to allow
sufficient time for responses to subside and reduce concerns about shift-
invariant nonlinearity (as this property has not been examined in detail
in subcortical structures).

Using this approach, we found that SC and LGN exhibit robust and
fast responses at each stimulus duration, and that their temporal prop-
erties were not within the distribution of responses measured in visual
cortex, suggesting fundamentally different response characteristics in
these regions that should be taken into account in fMRI analysis. Each
structure also exhibited a hemodynamic nonlinearity: responses to brief
stimuli were faster and larger than would have been predicted by the
responses to long stimuli. Despite differences in baseline hemodynamic
timing, the nonlinearity in LGN was similar to that in cortex. Further-
more, LGN exhibited fast oscillations with a similar frequency response as
in cortex, suggesting that hemodynamic nonlinearities result in relatively
rapid BOLD signals even in small subcortical structures, due to the
enhanced speed and amplitude of responses to brief neural activity.
These results highlight fast response properties within subcortical
structures that should be accounted for in analysis of fMRI data, and that
could also be taken advantage of in future studies, as they may enable fast
experimental designs that exploit the rapid nature of human subcortical
hemodynamics.

Methods
Subject population

All subjects provided informed written consent, and all procedures
were approved by Massachusetts General Hospital's Institutional Review
Board. A total of 30 subjects were scanned and 28 subjects were
analyzed. Two subjects were excluded, one for severe motion and one
with poor behavioral performance who reported falling asleep during the
experiment. The analyzed subjects were between the ages of 19-36 years
(mean = 24.8 years), with 17 female and 11 male.

MRI data acquisition

Experiment 1 (aimed at characterizing nonlinearity) analyzed 23
subjects, who were scanned on a 7 T Siemens whole-body scanner with a
custom-built 32-channel head coil array and birdcage head coil for
transmit. Each session began with a 0.75mm isotropic multi-echo
MPRAGE (van der Kouwe et al., 2008) and ended with a whole-brain
reference scan. The reference scan acquired a volume using the same
fMRI acquisition parameters as the functional runs, except that it ac-
quired additional slices to cover the whole brain in each subject, to aid
with registration by providing whole-brain information with the same
distortion patterns as the functional scans. Functional runs acquired 38
oblique slices, positioned to capture the superior colliculus (SC), lateral
geniculate nucleus (LGN), and calcarine sulcus (primary visual cortex,
V1). Functional scans consisted of a single-shot gradient echo SMS-EPI at
1.1 mm isotropic resolution (R =4 acceleration, MultiBand factor =2,
matrix =174 x 174  full-Fourier, blipped CAIPI shift=FOV/2,
TR=1.11s, TE=26ms, nominal echo spacing=0.79ms, flip
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angle =70°, 4 dummy images). For seven of these subjects, FLEET-ACS
was not used, and occasional runs exhibited reconstruction artifact due
to subject motion during acquisition of the pre-scan calibration in each
run: a total of 7 runs (across all 7 subjects) were excluded manually due
to this artifact. Runs lasted 260 s in these subjects. For the remaining 17
subjects, FLEET-ACS data were used (Polimeni et al., 2016), and no runs
were excluded, with each run lasting 268 s. The FLEET-ACS technology
was added to the functional sequence when it became available and
reduced the effect of subject motion during pre-scan calibrations,
enabling us to avoid the need to exclude runs in these subjects.

Experiment 2 (aimed at characterizing frequency responses) analyzed
5 subjects, with the same anatomical image acquisition as above. Func-
tional runs were acquired as single-shot gradient-echo blipped-CAIPI
SMS-EPI (Setsompop et al., 2012) with 15 oblique slices with 2mm
isotropic resolution (R = 2 acceleration, MultiBand factor = 3, 120 x 120
full-Fourier, blipped CAIPI shift=FOV/3, TR =227 ms, TE=24ms,
nominal echo-spacing =0.59 ms, flip angle =30°, 2 dummy images).
Each run lasted 254 s.

Visual stimulus

Visual stimuli were presented using a DLP projector (Psychology
Software Tools), with timing synchronized to the 60 Hz refresh rate of the
stimulus delivery computer, onto a screen placed within the scanner bore
near the top of the head. Subjects viewed the stimulus through an angled
mirror placed above the eyes. Stimulus presentation code was written
using Psychtoolbox (Kleiner et al., 2007).

Throughout all visual stimulation runs, subjects performed a simple
visual fixation task. A red dot at the center of the screen alternated be-
tween light and dark red with switch times drawn from a uniform dis-
tribution between 0.8 and 3 s. Subjects were instructed to press a button
on an MR-compatible USB button box every time the dot changed colour.
Dot size was adjusted in a practice run prior to the beginning of the
functional scans, targeting an 80-90% detection rate, and if performance
dropped noticeably during the session, verbal feedback was provided to
the subject.

In Experiment 1 (nonlinearity), the visual stimulus in either two or
three runs (depending on total session length; see discussion at end of
paragraph) consisted of a functional localizer in which a radial check-
erboard counterphase flickering at 12 Hz was presented for 16, alter-
nating with a blank gray screen for 13s. Subsequent runs presented
checkerboard stimuli lasting either 0.167, 0.5, 1, 2, or 4 s. In 12 subjects,
stimuli lasting 8 s were also presented. Interstimulus interval (ISI) was
manipulated across and within subjects, with 10 subjects viewing stimuli
with 17-21 s ISIs; 9 subjects viewing stimuli with 2-5 s ISIs; and 4 sub-
jects participating in both short and long ISI conditions: half of runs used
ISIs between 17 and 19 s and half used ISIs between 2 and 3 s. The exact
ISIs were generated pseudorandomly in Matlab for each subject, drawing
from a uniform distribution across these time ranges, to provide temporal
jittering. The total number of runs varied per subject, as we aimed to
acquire as many runs as possible due to the small size of the investigated
signals; we typically aimed to collect 12 runs (including localizers), but
ended earlier if visual inspection suggested motion had increased, or if
verbal checks with the subject suggested they were tired or uncomfort-
able, resulting in a median of 11 runs per subject (interquartile-range
(IQR):10-12 runs).

In Experiment 2 (frequency response), stimuli consisted of counter-
phase flickering radial checkerboards presented continuously, beginning
14 s after the start of the scan. The luminance contrast of the checker-
boards oscillated at a frequency of interest throughout the run as previ-
ously described (Lewis et al., 2016). A functional localizer run in each
subject consisted of a checkerboard with luminance contrast oscillating
as a sinusoid at 0.1 Hz. The remaining runs used a luminance waveform
shaped as the square of a sinusoid, oscillating at either 0.2 Hz or 0.5 Hz.
Subjects performed a median of 11 runs (IQR:11-12 runs).

281
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ROI data analysis

Anatomical images were bias corrected to improve gray-white
contrast at 7T (Polimeni et al., 2017). Surface reconstructions were
then automatically generated using FreeSurfer (Fischl, 2012). ROIs were
then defined using a combination of anatomical and functional infor-
mation; the stereotyped anatomical locations of V1, LGN, and SC, were
identified using the MEMPRAGE, and then further constrained to the
subregions that were visually driven by our stimulus, using the functional
localizer runs. None of the test data used for the HRF analysis were used
for the ROI definition analysis to avoid circular inferences. This ROI
definition aimed to identify voxels that were strongly visually driven by
our stimulus within anatomically defined regions and therefore did not
apply the same statistical thresholding across regions, as LGN and SC
have lower SNR and this would lead to excessively small ROIs that
discard visually driven areas due to the higher variance; however, all
hypothesis testing is performed on the independent data and therefore
verifies the significant visual drive to our identified ROIs.

Functional images were slice timing corrected using FSL slicetimer,
adapted to handle SMS-EPI acquisitions, and motion corrected to the
middle frame using AFNI 3dvolreg. No spatial smoothing was applied. To
identify ROIs, the functional localizer runs were analyzed in FSL and
combined with anatomical information. The localizer analysis in Exper-
iment 1 was performed in FSL feat, high-passed with a 50 s cutoff, applied
pre-whitening, and activation was modeled using the 16 s on/off stim-
ulus waveform convolved with a canonical HRF (gamma function with
mean lag 6s, st. dev. 3 s, in FSL). The mean of the resulting contrast
across all localizer runs was taken after transforming the statistical maps
to the spatial reference frame of the MPRAGE (see below for details on
registration procedures). The ROIs for the LGN and SC were then hand-
drawn using the functional localizer contrast overlaid on the anatom-
ical images as a guide. The ROI for visual cortex was computed by
thresholding the z-statistic for the localizer runs with a value of 4.0
(analogous to cluster-corrected p < 0.00007) and masking the contrast
with the automatically generated V1 labels derived from Freesurfer. A
deep ROI and a superficial ROI within V1 were generated by spanning the
cortical depth between the gray-white boundary and the pial surface, and
segmenting the 0-20% portion (deep-cortex surface) vs. 80-100%
portion (superficial-cortex surface). The deep and superficial ROIs were
then created by identifying voxels that were 80% filled by the deep-
cortex or superficial-cortex surfaces. (Freesurfer command: mri_la-
bel2vol, using parameters: -fillthresh 0.8 and -proj frac 0 0.2 0.1 (deep) or
0.81 0.1 (superficial)). Any voxels appearing in both ROIs were excluded
from the mask. The localizer analysis in Experiment 2 was performed in
FSL feat, discarded the first 106 volumes to restrict the analysis to the
steady-state oscillation, temporally high-passed with a 50 s cutoff, and
prewhitened. A sine and cosine at the stimulus frequency were then used
as covariates, and an F-statistic across the two contrasts was calculated.
The LGN ROI was hand-drawn using the z-transform functional localizer
map as a guide, and the V1 ROI was calculated automatically by
thresholding the z-score at a value of 7.0 (analogous to cluster-corrected
P <1 x 10712); note that this higher threshold for these data is because of
the higher SNR of the 2 mm acquisition) and masking with the automatic
V1 labels from FreeSurfer.

All analysis of functional data within the ROIs was performed by
registering the ROI mask to the functional run, and preserving the
timeseries information within its original spatial frame. Each functional
run was aligned to the anatomical image using boundary-based regis-
tration (Greve and Fischl, 2009) using a rigid transformation with the
reference scan as an intermediate volume (i.e., the partial-brain func-
tional runs were first aligned to the whole-brain fMRI reference scan, and
subsequently aligned to the anatomical scan). The ROI masks described
above were transformed back into the spatial coordinates of each func-
tional run by inverting the registration matrices. The mean timeseries
across the ROI was then computed across these normalized timeseries
within each voxel. The mean ROI timeseries was then spline detrended
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using piecewise knots every 50s and normalized to percent signal
change, using the mean value in the second half of the run as the baseline
value. No prewhitening was performed on the functional data used for
the HRF analysis to avoid altering the temporal properties of the test
data.

Cortex

z-statistic
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Trial response estimation
Trial responses were calculated from the mean timeseries of the ROI

using an FIR analysis, by modeling a series of non-overlapping delta
functions lasting 0.25s each, spanning a time window of varying
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Fig. 1. Visual-evoked activity in cortex, thalamus, and brainstem. A) Activation map from a representative subject in the localizer runs (16 s block stimulus)
shows activity across visual cortex, LGN, and SC. B) Mean trial responses to stimuli of varying durations in each ROIL Shaded regions reflect standard error across
subjects (n = 23). C) Peak time of the trial response in each region for each stimulus duration, shows consistently increased response speed in subcortical structures. D)
Full-width-half-maximum of the trial response shows narrower responses in subcortical structures, across stimulus durations.
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duration following each stimulus presentation (windows: [16 20 22 24
28 30] seconds, corresponding to the [0.167 0.5 1 2 4 8] second stimuli).
The ROI timeseries was upsampled to have a matching timescale to the
delta function series. Additional covariates were included for each run
consisting of a column of ones and a column linearly increasing from 0 to
1 to account for mean and linear drifts across runs. The parameter esti-
mate for each delta function was then computed in Matlab by inverting
the resulting matrix, yielding an estimated deconvolved trial response for
each stimulus duration in each subject. The mean value between 0 and 1 s
was subtracted from each trial response for display (Fig. 1b). Variance
explained for individual subjects was calculated as the variance of the
summed trial responses, divided by the variance of the mean data
timeseries, in each ROL An approximate measure of temporal SNR
(tSNR) for each region was obtained by dividing the mean of the ROI
timeseries by its standard deviation and averaging this value across runs
(this calculation underestimates the true tSNR as variance is inflated by
the stimulus-driven responses), reported in Supp. Table 1.

Impulse response estimation

Impulse responses were deconvolved using FSL's linear optimal basis
set (FLOBS), calculated over the entire fMRI volume. The deconvolution
operated on the signal timeseries using a separate waveform for each
stimulus duration, yielding a “deconvolved impulse response” repre-
senting the hemodynamic response for a specific stimulus duration
condition. This method takes into account the stimulus duration in order
to estimate a deconvolved impulse response for each stimulus type, and
the basis set imposes temporal smoothness priors to help regularize the
estimation. When no neural nonlinearity was included, the input stim-
ulus waveforms were flat. In the neural nonlinearity case (Supp. Fig. 1),
the stimulus waveform was calculated as stim(t) = 1 + 0.25-exp (—t/12),
where t is time since stimulus onset, to approximate a ~20% decay in
neural activity in response to longer stimuli based on prior studies (Janz
et al., 2001; Li and Freeman, 2007); this form is similar to that used in
previous models (Buxton et al., 2004). The resulting parameter estimates
for each basis function were then averaged over the ROI, and the final
impulse response was computed by taking the sum of these basis func-
tions weighted by the parameter estimate values. Since the deconvolu-
tion is sensitive to noise, this analysis was restricted to runs with long
(>1655) ISIs, as deconvolutions in subjects with only short ISIs sometimes
yielded physiologically implausible results due to the overlap in BOLD
responses across closely spaced trials (total analyzed for impulse re-
sponses: n =14 subjects). To obtain confidence intervals and perform
statistical testing, we conducted a bootstrap resampling 1000 times over
subjects, as described below.
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Waveform parameter and nonlinearity estimation

Shape parameters for the trial response waveforms across the group
were calculated by first taking the mean waveform across all subjects,
and then computing the time-to-peak (TTP), full-width-at-half-maximum
(FWHM), and area values. Trial responses were baseline corrected by
subtracting the mean value between t =0 and t = 2 s from each response.
For area and peak computation across conditions, in which we aimed to
compute magnitude of the response relative to its most negative value,
the trial response value at the timepoint 2 s post-stimulus was subtracted
from each estimated trial response prior to calculating area and ampli-
tude, as illustrated in Fig. 2a. The timepoint t = 2 s was selected because
it typically reflected the most negative value within the baseline period,
enabling us to assess peak-to-peak magnitude and area, but overall
conclusions were similar when selecting t=0 or t=1s. The peak was
then selected as the maximal timepoint in the trial response. The TTP was
estimated as the time of the peak relative to stimulus onset; FWHM was
estimated as the times at which the response reached and fell below half
the value of TTP; and the area was computed numerically as the integral
of the response waveform between 2s post-stimulus until the first
timepoint after the peak at which the waveform fell below its baseline
value.

Confidence intervals for the trial response waveform parameters were
computed by resampling across subjects with replacement, drawing 1000
bootstrap samples. In each bootstrap sample, parameters were randomly
drawn to create a resampled group with the same size as the original
dataset (same number of subjects). The waveform parameters were
recomputed on the mean of this new sample, and the reported 95% CI
reflects the 2.5th and 97.5th percentiles of these resampled parameter
values. A small proportion of such bootstraps (<1.5%) yielded a wave-
form for which TTP could not be defined; these were discarded. Statis-
tical testing for a progressive change in waveform parameters across
regions was performed by taking the difference of the mean value across
stimulus durations for each bootstrap sample, and then testing for sig-
nificant differences across each region, using Bonferroni correction for
multiple comparisons across regions. Statistical comparisons of the
nonlinearity between regions were performed by analyzing the magni-
tude of each response normalized by the stimulus duration. If responses
are linear, these normalized magnitudes will fall on the line y=1,
whereas nonlinear responses will deviate from that line (Fig. 3d).
Magnitude of nonlinearity was thus calculated as the best-fit straight line
to the normalized magnitudes, and then statistics between regions were
calculated as the difference in the slope of this line (i.e. steep negative
slope = highly nonlinear, with large responses to brief stimuli; slope of
0 = linear).

The same shape parameters were also estimated from the impulse
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Fig. 2. Nonlinear amplitude modulation of the trial response across stimulus durations in each ROI. A) Schematic of parameter estimation from the trial
response. B) Area of the trial response for each ROI and stimulus duration shows a nonlinearity in which shorter stimuli elicit proportionally larger responses. Area is
normalized to the value of the 4 s stimulus. C) The peak amplitude of the trial response declines with shorter stimulus duration in each region. For the longest stimulus,
V1 has larger responses than SC, but for the shortest stimulus there is no significant difference across regions. Error bars indicate 95% confidence intervals drawn from

bootstrap across subjects (n = 23 subjects).
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Fig. 3. Deconvolved impulse response shows nonlinearity in timing and amplitude. A) Mean impulse response across subjects for each ROI and stimulus
duration, normalized to the peak amplitude of the response to the 4 s stimulus. Shaded region is standard error across subjects (n = 14). B) Mean time-to-peak of the
impulse response: each structure exhibits temporal nonlinearities, with faster responses to shorter stimuli. C) Mean full-width-half-maximum of the impulse response.
D) Nonlinearity of the impulse response amplitude across ROIs shows similar amplitude nonlinearity in LGN and V1, and stronger nonlinearity in SC. Amplitudes are
normalized to the value for the 4 s stimulus. Black dashed line indicates the linear response as a reference, shaded region is standard error across subjects (n = 14).

response waveform. The estimated impulse responses were smooth and
originated at zero due to the nature of the FSL basis functions; the
waveform parameters were therefore estimated without any baseline
correction procedures. The reported waveform shape parameters (Fig. 3b
and c) were computed on the mean impulse response across subjects to
improve accuracy. Statistics for the waveform parameters were
computed with the bootstrap as above. The amplitude nonlinearity was
estimated as the slope of the change in peak amplitude of the impulse
response across stimulus durations within each subject, and statistical
differences in slope were calculated by comparing the subject-level
nonlinearity estimates across regions.

Voxelwise temporal lag estimation

The response lag time for each individual voxel was estimated in the
localizer run after the preprocessing described above. In Experiment 1,
where the localizer consisted of a 16 s on/off checkerboard stimulus, a
standard response prediction model for the mean response timecourse
was constructed by convolving the square wave of the stimulus presen-
tation with the SPM canonical HRF. Each voxel timeseries was then
upsampled to 0.05 s time resolution, the first 50 interpolated timepoints
were discarded, and the results were cross-correlated with the response
prediction model with lags ranging from —3 to 3s. The lag value with
maximal cross-correlation was taken as the local lag estimate for that
voxel. For Experiment 2, where the localizer was a 0.1 Hz sinusoidal
oscillation, the local lag was estimated as the phase of the best-fit sine
and cosine basis functions.

Simulations

The predicted response to an oscillatory stimulus was modeled

numerically by convolving a sinusoidal input with an HRF. The HRF was
taken as the deconvolved impulse response in either V1 or LGN, in the
0.167 s ('fast HRF') or 2 s (‘reference HRF') trial condition. In the linear
models (Fig. 4a), the HRF was convolved with stimuli ranging from
0.05Hz to 0.5Hz, and the magnitude of the resulting oscillation was
plotted. To quantify the frequency response (FR), the percentage ratio of
responses at 0.5 Hz relative to responses at 0.2 Hz was reported. In the
linear case, a single HRF was used for both stimulus frequencies. In the
nonlinear case, the fast HRF was convolved with a 0.5 Hz stimulus input
and the reference HRF was convolved with a 0.2 Hz stimulus input.

Frequency response calculation

Analysis of the oscillatory responses was performed on the mean
timeseries from the ROIs defined in the functional localizer, processed as
described above. The timeseries for each region was upsampled to 10 Hz
and the mean response across stimulus cycles was computed, discarding
cycles within 14 s of stimulus onset to focus on oscillations around the
plateau rather initial transients. The amplitude of the oscillation was
calculated as the magnitude of the best-fit sine wave, fit using least-
squares linear regression with a sine, cosine, and constant regressor.
Confidence intervals for the amplitude were calculated by drawing a new
sample of subjects, followed by a new sample of cycles, and recalculating
the mean amplitude of a sine wave with the same phase as in the original
dataset, resampling 1000 times. 95% CIs were drawn from the 2.5th and
97.5th percentile of these resampled magnitude values.
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Fig. 4. Detection of high-frequency oscillations within V1 and LGN. A)
Simulated frequency response with different HRFs, drawn from the impulse
responses in V1 and LGN to 0.167 s (the ‘fast’ HRF) and 2 s stimuli (the ‘refer-
ence’ (ref.) HRF). The linear model predicts sharp drops for each HRF, but with
less attenuation for the fast HRFs. B) Measured frequency response in V1 and
LGN in response to oscillatory visual stimuli. Error bars are 95% confidence
intervals - error bars for a small value can appear large when plotted on log
scale, but oscillations were significant in each region. C) Mean fMRI response in
V1 and LGN, locked to the oscillatory stimulus cycle. Oscillations are clearly
detected in both structures, with a consistent phase offset such that LGN peaks
earlier in time, consistent with its more rapid hemodynamic response.

Results

Nonlinear responses to brief stimulation across brainstem, thalamus, and
primary visual cortex

We presented flickering checkerboards, inverting at 12 Hz, in order to
induce sustained neural activity throughout the stimulus duration period
(Janz et al., 2001; Liu et al., 2010). The functional localizer runs pre-
sented long-duration (16 s) visual stimulation to generate strong BOLD
responses used to identify the stimulus-driven regions within V1, LGN
and SC (Fig. 1a; mean ROl size = 6516 voxels in V1; 92 in LGN; 20 in SC).
We then calculated the trial responses of these ROIs in the runs using
stimuli of varying durations, and found reliable activation of each region
in response to brief stimuli as well (Fig. 1b). While individual subject
variance was higher in subcortical regions due to their lower SNR (Supp.
Fig. 1, Supp. Table 1), mean responses were nevertheless clearly detected
across the group in each region (Fig. 1b). Comparing overall response
characteristics demonstrated that BOLD responses were faster and nar-
rower in LGN and SC than in V1 (Fig. 1c and d), consistent with previous
studies using long stimulus durations (Wall et al., 2009). For a stimulus
lasting 4 s, the mean BOLD response peaked at 5s in SC, 6.25s in LGN
and 7.75 s in V1. We further observed that these earlier peak times were
seen consistently at most stimulus durations (Fig. 1c), with peak timing in
response to a 0.5 s stimulus of 4 s in SC, 4.5s in LGN, and 4.75s in V1.
Across all conditions, responses had a significantly shorter time-to-peak
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(TTP) in SC than in LGN, and significantly shorter in LGN than in V1
(Fig. 1c, each p < 0.0083 (corrected alpha), bootstrap). These responses
were significantly faster across all conditions in the subset of subjects
viewing stimuli with only short ISIs, as compared to those viewing only
long ISIs (mean difference =0.8s, Supp. Fig. 2, p =0.005, Wilcoxon
signed-rank test), although the overlapping responses in the short ISI
condition could potentially alter the observed response (see Discussion).
Responses were also significantly narrower (Fig. 1d, smaller
full-width-at-half-maximum (FWHM)) in V1 than in either subcortical
structure (p < 0.001, bootstrap) but did not differ between LGN and SC
(p =0.29, bootstrap). These fMRI signal delays were far longer than the
neural transmission delays between these structures, which are in the
tens of milliseconds (Rockland et al., 1997; Schmolesky et al., 1998).
These findings indicated a consistent progression in the timing of he-
modynamic responses from brainstem to cortex, with the fastest re-
sponses in SC, later responses in LGN and latest in V1.

To assess the nonlinearity of the hemodynamic response across
stimulus durations, we first calculated the area of the BOLD trial response
(Fig. 2a), normalized by the response to a 4 s stimulus, in order to test
whether the magnitude of the response area scaled proportionally with
stimulus duration. Significant nonlinear responses were observed in each
region (Fig. 2b, bootstrap 95% confidence interval (CI) of slope = [—0.30
—0.12]1inV1; [-0.47 —0.01] in LGN; [-1.36 —0.03] in SC; where zero is
linear). No significant difference in nonlinearity was observed between
subjects in short ISI vs. long ISI conditions (Supp. Fig. 2, CI of slope
difference = [-0.31 0.07] in V1, [-0.89 0.04] in LGN; [-1.82 3.01] in SC,
bootstrap), although it is possible differences could be found with larger
sample sizes. The nonlinearity in response area observed in V1 was
consistent with previous studies (Pfeuffer et al., 2003; Soltysik et al.,
2004), with subsecond stimuli yielding responses approximately twice as
large as would be expected from the response to a 4 s stimulus, and the
nonlinearity within LGN was of similar magnitude (Fig. 2b). The area
nonlinearity in SC trended larger, with all subsecond stimuli eliciting
increased amplitudes relative to the other ROIs, but the difference in area
nonlinearity was not statistically significant due to high variance in area
estimation in the SC trial responses (difference in slope between V1 and
SC: CI=[-1.15 0.24]). Remarkably, the peak amplitude of the SC
response to brief stimuli was as large as the response across the V1 ROI
(peak response to 0.167 s stimulus: 0.44%, CI = [0.20 0.47]; LGN: 0.47%,
CI=[0.18 0.60]; SC: 0.42%, CI = [0.10 0.95]), despite a twofold differ-
ence in response amplitude to longer duration stimuli (Fig. 2c, median
diff. in 4s response=1.67 percentage points, CI=[0.97 2.30],
bootstrap).

The mean trial response varies due to stimulus duration, whereas the
HREF is an idealized impulse response function that would be identical
across stimuli if the responses were linear. To characterize the shape of
the HRF, we next used smooth basis functions to deconvolve an impulse
response for each stimulus duration and each ROI (Fig. 3a). While the
trial responses were obtained using FIR analysis (minimizing assump-
tions about the response shape and avoiding temporal smoothing), the
impulse response analysis used basis functions to constrain the decon-
volved response to smooth, physiologically plausible waveforms. This
analysis included only subjects that viewed stimuli with long (>17s)
inter-stimulus intervals (ISIs), to minimize errors in deconvolution due to
overlapping response timecourses (n = 14 subjects). The low SNR of the
0.167 s stimulus introduced some noise in deconvolution, reflected in
late timescale (>10 s) signals in SC that were not significant, but other-
wise the mean impulse responses were consistent with our trial-based
observations. The deconvolved impulse responses confirmed that the
HRF was increasingly fast and narrow in deeper structures, with a shorter
TTP (Fig. 3b, Table 1, Supp. Fig. 3; corrected p = 0.006 (V1-LGN); 0.036
(LGN-SC); 0.018 (V1-SC); bootstrap) and smaller FWHM of the HRF in
LGN and SC as compared to V1 (Fig. 3c, Table 1, corrected p =0.012 (V1-
LGN); 0.13 (LGN-SC); <0.001 (V1-SC); bootstrap). In addition, the speed
of the HRF depended on stimulus duration across brain regions, as it
became increasingly rapid and narrow for shorter duration stimuli
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Table 1
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Mean parameters and 95% confidence intervals (CI) for the impulse response across regions and stimulus durations. Time-to-peak (TTP) and full-width-at-half-

maximum (FWHM) are reported in seconds.

0.167 s 0.5s 1s 2s 4s

Mean CI Mean CI Mean CI Mean CI Mean CI
TTP
V1 4.5 (4.25-4.80) 4.7 (4.45-5.05) 4.85 (4.55-5.20) 5.15 (4.85-5.45) 5.3 (5.00-5.65)
LGN 4.15 (3.80-4.85) 4.2 (4.05-4.30) 4.15 (4.00-4.30) 4.35 (4.20-4.50) 4.35 (4.20-4.50)
SC 3.85 (3.45-4.30) 3.8 (3.40-4.20) 3.9 (3.50-4.25) 4.1 (3.95-4.25) 4 (3.85-4.20)
FWHM
\21 4.6 (4.15-6.88) 4.65 (4.35-5.00) 4.85 (4.50-5.35) 5 (4.70-5.35) 5.25 (4.90-5.70)
LGN 4.05 (3.60-4.95) 4 (3.90-4.15) 3.95 (3.80-4.15) 4.15 (4.00-4.33) 4.15 (4.00-4.35)
SC 3.75 (3.25-4.40) 3.55 (3.10-4.05) 3.75 (3.25-4.10) 4 (3.80-4.15) 3.75 (3.60-3.95)

Table 2

Mean parameters and 95% confidence intervals (CI) for the impulse response across cortical depths. Time-to-peak (TTP) and full-width-at-half-maximum (FWHM) are

reported in seconds.

0.167 s 0.5s 1s 2s 4s

Mean CI Mean CI Mean CI Mean CI Mean CI
TTP
Deep 4.4 (4.15-4.75) 4.6 (4.33-4.90) 4.8 (4.45-5.15) 5.05 (4.75-5.38) 5.25 (4.90-5.60)
Superficial 4.55 (4.30-4.90) 4.75 (4.45-5.05) 4.9 (4.58-5.20) 5.1 (4.85-5.40) 5.3 (5.00-5.70)
FWHM
Deep 4.5 (4.10-5.45) 4.55 (4.20-4.90) 4.75 (4.35-5.20) 4.9 (4.60-5.25) 5.15 (4.78-5.55)
Superficial 4.6 (4.20-5.60) 4.6 (4.30-4.90) 4.85 (4.55-5.25) 5.05 (4.70-5.40) 5.4 (5.05-5.85)

(Fig. 3b and c; Table 1; p=0.0197 for 0.5s vs. 4 s stimulus, Wilcoxon
signed-rank test). These results indicated relatively consistent non-
linearities in the temporal properties of the HRF across brain structures,
as each region exhibited increased speed in response to shorter stimuli.

The magnitude of the HRF also increased with each decreasing
stimulus duration, consistent with the nonlinearity observed in the trial
responses where shorter stimuli elicited proportionally larger responses.
The slope of the normalized impulse response magnitude was signifi-
cantly less than zero for each brain region, indicating a nonlinearity in
response magnitude with shorter stimuli inducing larger responses
(Fig. 3d, Supp. Fig. 4, p <0.001 in each region, bootstrap). In addition,
the nonlinearity was significantly different across regions (p =0.001,
Kruskal-Wallis test): SC was significantly more nonlinear than cortex
(p =0.003, Wilcoxon signed-rank test) and than LGN (p =0.004, Wil-
coxon signed-rank test). Taken together, these results demonstrated that
subcortical visual structures (LGN and SC) exhibit similar or larger
nonlinearities than those previously reported in cortex, as brief stimuli
elicit BOLD responses that are faster, narrower, and larger than would
have been predicted by a linear model.

This deconvolution of the impulse response assumes that the neural
response behaves linearly - i.e., that the impulse response function for
the neural activity is identical across response durations, and that the
neural activity can therefore be approximated by the stimulus timing
waveform. Our flickering checkerboard stimulus is expected to induce
sustained neural activity throughout the stimulus duration period, as a
contrast inversion occurs every 167 m s, but nevertheless an approximate
~20% neural nonlinearity can be expected in V1 and LGN due to stronger
neural responses at stimulus onset (Janz et al., 2001; Li and Freeman,
2007; Liu et al., 2010). These previous studies have also shown that this
neural nonlinearity is not sufficient to explain the fMRI nonlinearity. To
determine whether the neural nonlinearity could explain the fMRI
response nonlinearity we observed, we repeated the impulse response
deconvolution using a physiologically plausible nonlinear neural
response, comprised of a 20% decrease in neural activity at longer
stimulus durations. Even after incorporating this neural nonlinearity, we
still found similar increases in the amplitude and speed of the hemody-
namic impulse response to brief stimuli (Supp. Fig. 5), suggesting that
changes in hemodynamic timing and amplitude with shorter stimulus

durations occur across all three structures.

Frequency response of LGN and V1 measured at high temporal resolution

The nonlinear increase in the speed and amplitude of hemodynamic
responses to brief neural activity can potentially enable detection of
relatively fast oscillations in the BOLD signal, as the faster and larger
hemodynamic response would enhance high-frequency content in the
BOLD fMRI signal. These nonlinear properties are thought to contribute
to fast (>0.2 Hz) oscillations measured in visual cortex (Lewis et al.,
2016). Since LGN appeared to exhibit similar nonlinearity as in V1, we
hypothesized that it might also be possible to detect >0.2 Hz oscillations
in LGN despite the small size and lower SNR in this region. In addition,
rapid and narrow HRFs can preserve high-frequency content even in a
linear regime, if the temporal properties of the HRF are sufficiently fast.
We modeled the predicted frequency response of V1 and LGN using the
deconvolved impulse response from either the 2s trials (the ‘reference’
HRF) or the 0.167 s trials (the 'fast’' HRF), and simulated the response to
oscillatory input ranging from 0.05Hz to 0.5Hz (Fig. 4a). Assuming
linearity in the simulations (by using the same HRF for every stimulus
frequency), each HRF predicted a steep drop in response amplitude, but
with slightly greater preservation of high-frequency content for the fast
HRF (Fig. 4a). We quantified the predicted frequency response (FR) as
the response amplitude to a 0.5 Hz stimulus divided by the response to a
0.2Hz stimulus, multiplied by 100 (i.e. percent scaling). We found
stronger frequency responses were predicted for the fast HRF (2.1 FR in
LGN; 1.7 FR in V1), as compared to the reference HRF (1.8 FR in LGN; 0.7
FR in V1). However, if we instead modeled the frequency response
nonlinearly, using the fast HRF to model the response to a 0.5 Hz stimulus
and the reference HRF to model the response to a 0.2 Hz stimulus, the
predicted frequency response was stronger: 6.8 FR in V1 and 6.1 FR in
LGN. We thus concluded that while the HRF waveform properties in V1
and LGN seen in response to long-duration stimuli are not sufficient to
produce strong high-frequency responses, the nonlinearity in the shape of
the impulse response leads to larger and faster HRFs in response to short
stimuli, predicting stronger high-frequency signals both in visual cortex
and thalamus.

To empirically test the predictions of these models, and determine
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whether it is possible to detect fast oscillatory signals within LGN, we
measured the frequency response using oscillating visual stimuli, as done
previously for V1 (Lewis et al., 2016). We presented stimuli with oscil-
lating luminance contrast to induce oscillatory variation in neural ac-
tivity at either 0.2 Hz or 0.5 Hz, imaging with lower spatial resolution
(2 mm isotropic) to increase temporal resolution, and therefore focused
on LGN and V1 (excluding SC). We found that significant oscillations
were detected both in V1 and in LGN for both frequencies (Fig. 4b; V1:
0.2Hz: 1.26%, CI=[0.95 1.61]; 0.5Hz: 0.11%, CI=[0.07 0.16]; LGN:
0.2 Hz: 1.04%, CI=[0.71 1.38]; 0.5Hz: 0.07%, CI=[0.01 0.13]). The
phase of the oscillation in LGN preceded that in V1 (Fig. 4c), consistent
with the faster time-to-peak of the HRF observed in LGN (Fig. 1b). The
relative amplitude of the frequency response was similar across both
regions, with 0.5 Hz oscillations that exhibited a 6.6 FR in LGN and 9.0
FR in V1 (Fig. 4b and c). These oscillations were several times larger than
predicted by canonical HRF models (i.e. 5-7 times larger than the pre-
dicted 1.3 FR), consistent with previous reports (Lewis et al., 2016).
These oscillations were also larger than predicted by our linear simula-
tions (0.7-2.1 FR), and were instead near the simulated values when the
hemodynamic response was modeled as faster and larger to brief stimuli
(i.e. nonlinear). Since the reference HRF was faster and narrower in LGN,
but the nonlinearity to brief stimuli was similar, these results suggested
that a major determinant of the magnitude of high-frequency oscillations
is the nonlinearity of the HRF when stimuli are brief. In contrast, the
phase of the oscillations followed the same pattern as time-to-peak of the
HRF, with oscillations in LGN exhibiting earlier phases.

Thalamic responses precede cortical parenchymal responses

The local speed and amplitude of fMRI signals are influenced by the
presence of large surface veins within individual voxels, which lead to
larger, slower responses compared to those in the parenchyma, and could
contribute to the observed differences between cortex and thalamus. To
more finely separate out the effects of local vascular anatomy on
nonlinear hemodynamic responses and frequency responses, we sorted
voxels within V1 based on the relative delay of their responses measured
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in the Experiment 1 localizer run. We observed clear spatial structure in
the temporal delays of individual voxels within V1, with later responses
appearing to be near the cortical surface (Fig. 5a and b). To quantify the
nonlinearity shift across this depth profile, we segmented two ROIs
within V1, one spanning the 0-20% deepest portion of the cortical depth,
and one spanning the 80-100% portion (i.e. superficial). Trial responses
were 79% larger in the superficial ROI (Fig. 5c¢), consistent with previous
findings showing that BOLD response amplitude increases from the white
matter boundary to the pial surface (Polimeni et al., 2010; Ress et al.,
2007; Siero et al., 2015). In addition, we found that the BOLD trial re-
sponses peaked earlier in the deep V1 voxels than in the superficial voxels
(mean difference across durations = 0.25 s), consistent with prior studies
(Siero et al., 2011) and likely corresponding to faster responses within
cortical gray matter parenchyma and slower responses in larger draining
vessels on the cortical surface (Chen et al., 2011; Yu et al., 2012).
Deconvolving the impulse response within deep and superficial V1
indicated that parenchymal responses were not simply shifted earlier in
time (Fig. 5d, Table 2), but also had a narrower shape (Fig. 5e), indicating
more temporally precise and high-frequency signals might be expected in
deeper layers (mean FWHM: 4.68s deep V1; 4.83s superficial V1,
p=0.048, Wilcoxon signed-rank test). In addition, the superficial V1
amplitude response exhibited greater nonlinearity than the deep V1
amplitude response (p < 0.001, Wilcoxon signed-rank test). However,
impulse responses were still faster within the LGN than in the deep V1
voxels (mean TTP difference between deep V1 and LGN =0.58s,
p=0.0003; mean FWHM difference =0.71s, p=0.0004, Wilcoxon
signed-rank test), suggesting that presence of surface vessels on the
cortex is not sufficient to explain the different temporal properties across
these tissues. To further test whether the distribution of voxel phase
offsets in the LGN differed substantially from V1, we computed mean
temporal delay values for each individual voxel in the 0.1 Hz oscillatory
stimulus experiment. The distribution of temporal lags was consistently
shifted earlier in LGN (Fig. 5f, Supp. Fig. 6, p <0.001 in 4/5 subjects,
p=0.51n 1/5 subjects, Kolmogorov-Smirnov test), again suggesting that
the subcortical structures exhibit faster responses than even the
fastest-responding segment of V1.
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Fig. 5. Distribution of temporal properties within cortex and LGN. A) Example activation map within visual cortex in the localizer run (16 s block) in one subject
shows stronger activation towards the pial surface. White arrow highlights a region of the surface with large and slow responses. B) Example temporal delay map
within the same subject shows spatially structured delays, with larger delays towards the pial surface. C) Mean trial response in a V1 ROI defined to include deep (gray-
white boundary) voxels and superficial (pial surface) voxels shows consistently larger and later responses in the deep ROI (n = 23 subjects, shaded region is standard
error). D and E) Time to peak (TTP) and full-width-half-maximum (FWHM) of the impulse response across deep and superficial V1 and LGN shows a gradient of peak
timing (n =14 subjects). F) Distribution of temporal lags across structures in the 0.1 Hz oscillatory stimulus experiment shows heterogeneous properties across

structures (n =5 subjects).
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Discussion

We identified a heterogeneous distribution of hemodynamic response
timing and nonlinearity in subcortical and cortical visual structures, with
consequences for imaging fast BOLD signals in these structures. The re-
sponses in subcortical structures were strikingly faster and narrower than
in cortex. The bulk of these differences is likely due to hemodynamic
effects, as the differences were hundreds of milliseconds, much larger
than the expected delay in neuronal onset timing, which is on the order of
tens of milliseconds (Rockland et al., 1997; Schmolesky et al., 1998). We
also observed nonlinearities both in amplitude (with shorter stimuli
eliciting proportionally larger responses) and in timing (with shorter
stimuli eliciting faster and narrower responses) in both subcortical
structures. These amplitude and timing nonlinearities supported detec-
tion of high-frequency fMRI signals within the LGN.

The responses we observed in SC were larger than reported in pre-
vious studies that carefully characterized SC responses (Anderson and
Rees, 2011; Furlan et al., 2015; Katyal et al., 2010; Schneider and Kast-
ner, 2005; Wall et al., 2009; Zhang et al., 2015), and did not require
cardiac triggering or physiological noise reduction techniques, high-
lighting the benefits of ultra-high field for imaging these small subcor-
tical structures (Loureiro et al., 2016). A large increase in sensitivity is
provided at 7 T, but even more beneficial may have been the reduction in
partial volume effects provided by the small voxel size used here (Poli-
meni et al., 2017; Sclocco et al., 2017). The location of SC, at the upper
boundary of the brainstem and adjacent to ventricles, makes it particu-
larly vulnerable to physiological noise, and the spatially precise ROI
defined here may thus have contributed to the large signals we observed
by minimizing contamination from CSF signals. However, while the
mean response amplitude in SC was large, stimulus-evoked responses
within individual subjects were often still quite noisy and explained a
lower proportion of the variance, due to the SC's low SNR compared to
other regions. This low SNR was expected, as physiological noise is high
in these deep, small brainstem regions, but meant that averaging across
subjects was needed in order to obtain reliable results, as the large
stimulus-locked response was embedded in substantial noise. Our results
demonstrate that the BOLD response in small subcortical nuclei can be
nearly as large as that in cortex, and that higher spatial resolution
acquisition can enhance these signals substantially.

Our results suggest there may be a progression of hemodynamic
response speed within deeper brain structures, with brainstem and
thalamus responses occurring faster. The LGN is a highly vascularized
structure with a dense capillary bed (Duvernoy, 2009), and its responses
occurred with faster timing than the V1 parenchyma. It is possible that
higher spatial resolution fMRI data could identify a subregion of V1 with
responses as rapid as thalamus. However, the large size of visual cortex
meant that our analysis included a large number of voxels, and a broad
distribution of anatomic properties, as reflected by the large timing dif-
ferences across V1 voxels (Fig. 5). Our analysis therefore likely included
many cortical voxels with little contamination from large surface vessels,
and nonetheless responses were clearly faster within the LGN and SC. We
hypothesize that different vascular anatomy within subcortical struc-
tures, such as increased density of capillaries or altered venous drainage
patterns within the parenchyma, could contribute to these fast responses.
In particular, venous drainage could potentially be slower in these
structures due to the curved trajectory of the parenchymal venules
compared to those in the cortex (Devonshire et al., 2012), or physio-
logical mechanisms of blood flow regulation could operate at different
timescales. Biophysical models of the BOLD response also suggest some
mechanistic possibilities: in the ‘balloon model’ fast dynamics can be
generated through viscoelastic effects within veins, perhaps suggesting
regional differences in venous elasticity, size, and density could lead to
the differences in BOLD dynamics (Buxton et al., 2004, 1998); the
‘bagpipe’ model (Drew et al., 2011) suggests a potential influence of
different ratios of arterioles to venules across regions; and the ‘arterial
impulse response model’ (Kim and Ress, 2016) could suggest a role for
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related differences in oxygen delivery in subcortex following brief stim-
uli. Ultimately, animal studies directly imaging vessels could help iden-
tify what physiological mechanisms underlie these fast subcortical
responses. While our experiments focused on the visual system, future
studies could examine other thalamic and brainstem nuclei to whether
this pattern of faster responses is a consistent feature of deep brain
structures.

Our study focused on the positive peak of the BOLD response, but our
results clearly also contain a post-stimulus undershoot, consistent with
many previous studies (Buxton et al., 1998; Chen and Pike, 2009). Due to
the smaller magnitude of this signal, we did not analyze it in detail here,
and therefore how this post-stimulus undershoot varies across subcortical
regions remains an open question. Future studies using fewer stimulus
conditions (and thus higher trial numbers) could characterize how these
other aspects of the BOLD response vary across regions.

In contrast to the large differences in response timing across struc-
tures, LGN and V1 exhibited very similar nonlinearity profiles. While
nonlinearities in SC were larger than in cortex, this could be partially due
to neural differences within this structure. Based on previous studies
(Janz et al., 2001; Li and Freeman, 2007; Liu et al., 2010), we estimated
an approximate 20% decrease in neural activity within LGN and V1 to
longer stimuli, which is not sufficient to explain the observed hemody-
namic nonlinearities. In contrast, brief visual stimuli could potentially
elicit neural activity with nearly the same magnitude as longer stimuli
within SC, as many SC neurons respond selectively to stimulus onset and
to saccades (Furlan et al., 2015; Mohler and Wurtz, 1976; Shires et al.,
2010). While some degree of neuronal response nonlinearity is expected
across all three structures, the neural contribution to the observed
nonlinearity may thus have been larger in SC than it was in LGN and V1.
Invasive studies in animals may ultimately be needed to determine the
exact contributions of neural and hemodynamic nonlinearities, but the
large (>1s) changes in time-to-peak in our data suggest a substantial
hemodynamic contribution even in SC.

The robust and fast responses in LGN further suggest that fast imaging
approaches could potentially be used to capture high-frequency dy-
namics even in small brain structures. We successfully detected oscilla-
tions at 0.5 Hz in the LGN, and these oscillations appeared with similar
amplitude scaling to those seen in V1, which are an order of magnitude
larger than predicted by the canonical HRF (Lewis et al., 2016). Two
potential factors could have theoretically contributed to these large os-
cillations: 1) an HRF that is narrower than previously thought, yielding a
stronger response at high frequencies; and 2) a nonlinearity such that
briefer neural activity elicits faster and larger hemodynamic responses.
Our current results suggest that the latter may play a more important
role, as the LGN has a faster and narrower HRF across all stimulus du-
rations but did not exhibit a stronger response at high frequencies.
Instead, the similar nonlinearity properties in these two structures ap-
pears to be consistent with the similar frequency responses that they
exhibit to oscillatory neural activity. The SNR was lower in LGN due to its
small size and deep location, but the magnitude of the detected oscilla-
tion was nonetheless similar, suggesting that fMRI may be a useful
approach for tracking >0.1 Hz dynamics in local thalamic nuclei.

Finally, cortical imaging could also benefit from these observations,
by taking advantage of surface-based approaches to selectively analyze
the rapidly-responding regions within the parenchyma. Functional sig-
nals dominated by surface vessels exhibit not just poorer spatial speci-
ficity (Polimeni et al., 2010), but are also temporally delayed relative to
signals from the parenchyma (Chen et al., 2011; Yu et al., 2012), and may
cause cortical ROIs to have greater temporal variability due to the same
downstream signal pooling effects that reduce their spatial specificity (de
Zwart et al., 2005; Siero et al., 2011). These features may obscure fast
responses in cortex when low spatial resolution imaging or spatial
smoothing preprocessing is used. Alternative functional contrasts such as
those based on T2-weighted BOLD (e.g. spin-echo EPI) or cerebral blood
volume (e.g. VASO) have demonstrated the improvements in spatial
specificity that accompanies higher microvascular specificity (Huber
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et al., 2017; Yacoub et al., 2007), and spin-echo data exhibit HRFs with
the same fast dynamics as observed in deep cortical ROIs (Siero et al.,
2013), supporting this link between vascular anatomy and temporal
dynamics. Similarly, masking out anatomically identified surface vessels
could have an analogous effect, increasing temporal specificity. In
addition to these methods, our results suggest that cortical depth-based
analysis of gradient-echo EPI also provides a useful way to modulate
and potentially remove the effects of downstream vessels on response
timing, and could be used to enhance the high-temporal-frequency con-
tent of fMRI data.

Several limitations of our study could benefit from more detailed
future investigations of subcortical response properties. Firstly, each re-
gion we studied is composed of functionally heterogeneous substructures
(e.g. layered structure in SC and LGN), with potentially distinct vascular
anatomy, rather than the single ROIs we defined here. Adding individual-
level functional characterization of response properties across these re-
gions and defining multiple ROIs through more complex functional
localizers, could reveal heterogeneous dynamics within the regions we
studied. Second, the neural drive to these regions is not known, and both
its magnitude and timecourse is likely to differ. Future animal studies
could quantify the relative response timescales across structures through
invasive electrophysiology, to link with the observed hemodynamics.
Third, our spatial resolution was limited by the need for rapid acquisi-
tion, and increasing resolution further could potentially greatly benefit
imaging both SC and the laminar cortical differences we studied. In
particular, improving the spatial resolution for the fast oscillations
experiment could enable a direct analysis of whether deep vs. superficial
cortex exhibits distinct frequency response properties. Fourth, we
quantify the speed of the hemodynamic response through its time-to-
peak and width. However, we were not able to precisely measure
response onset times in these data due to the high noise levels in SC, and
the difficulty of accurately estimating the time of onset of a small signal
change. It is possible that the properties of onset times in these structures
may differ from peak and width, as factors such as blood pooling and
dynamics large surface vessels, and areas with faster time-to-peak do not
necessarily have faster onsets. Future studies using fewer stimuli and
acquiring more data per subject could investigate this other aspect of
hemodynamic speed.

A final and important limitation is that our results use deconvolution
to infer hemodynamic responses. Deconvolution can be a noisy process
and its results depend on the assumptions of the analysis, for instance the
smooth basis functions used to obtain the impulse response in this study.
These basis functions impose temporal smoothness upon the decon-
volved impulse responses (Woolrich et al., 2004); we therefore also
analyzed trial responses using a non-smoothed FIR analysis to confirm
the same dynamics are present with minimal temporal smoothing and
when avoiding assumptions about the shape of the hemodynamic
response. In addition, if responses are overlapping in time, deconvolution
depends on time-shift invariance, which is unlikely to hold perfectly in
the case of rapid event-related fMRI. Our analyses of our long ISI con-
dition data (17-21s) showed robust results, and this long temporal
separation is likely to be sufficient for the brief stimuli used in this study,
but this issue could potentially influence results in short ISI conditions.
Through these alterations in acquisition and design, future studies could
further resolve the dynamics and physiological mechanisms of subcor-
tical fMRI signals.

We conclude that subcortical and cortical elements of the human
visual system exhibit distinct hemodynamic temporal properties that
should be accounted for in fMRI analyses, with a progression from fast to
slow responses across brainstem, thalamus, cortical parenchyma, and
pial surface. Our identification of local temporal characteristics associ-
ated with differences in frequency content suggest that an improved
understanding of vascular anatomy, physiology, and neurovascular
coupling could inform analysis of local and rapid fMRI responses.
Furthermore, we find that nonlinearities in response timing and ampli-
tude are a key driver of fast fMRI signals, suggesting that fMRI signals
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may preserve more high-frequency content when neural activity varies
rapidly, which occurs in a broad range of natural contexts. fMRI exper-
iments and analyses could potentially be designed to take advantage of
the rapid response features in these structures, whether through closely-
spaced trials or through naturalistic experimental designs with fast time-
varying components. In doing so, future studies may be able exploit these
faster dynamics within deep brain structures to enable both high spatial
and temporal resolution imaging of activity in thalamic and brainstem
nuclei.
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